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The problem of solidification or melting under the action of a forced hydrodynamic
flow is considered. In the appropriate parameter régime, the problem admits a for-
mulation in terms of analytic functions. It is shown that a crystal with a parabolic tip
propagates without change of shape at a steady velocity. Some novel explicit solutions
are presented.

1. Introduction
The problem of pattern formation in two-dimensional free boundary problems

has received much attention; see for example Bensimon et al. (1986), Langer (1986),
Kessler, Koplik & Levine (1988), Brener & Melnikov (1991), Howison (1992). One
such problem is that of dendritic crystallization in the diffusion-limited régime, when
the growth velocity is determined by the rate of diffusion of latent heat away from
the front (Langer 1986; Kessler et al. 1988; Brener & Melnikov 1991). As was first
shown by Ivantsov (1947), a dendrite of parabolic shape propagates into a uniform
temperature field at a constant velocity; however, the tip radius l and velocity v cannot
be selected uniquely within the framework of Ivantsov’s approach. In experiments the
existence of hydrodynamic flow can play a significant role in the selection process and
very little is known about the action of imposed flow on crystal growth. Bouissou,
Perrin & Tabeling (1989) considered the influence of hydrodynamic forced flow on
the growth process, because the results for this problem help one to understand the
selection problem better. Recent theoretical studies (Benamar, Bouissou & Pelce 1988;
Dash & Gill 1984; Ananth & Gill 1989, 1991; Xu 1993) have been performed to
extend the Ivantsov parabolic solution to potential and viscous flows. In particular, it
has been found that the full Navier–Stokes model does not have an exact similarity
solution for forced convection (Ananth & Gill 1989, 1991; Xu 1993); there is however
an exact solution when the flow is driven by a density change at the interface (Howison
1988). On the other hand, solidification/melting in the presence of a potential flow
does admit an Ivantsov-like solution (Benamar et al. 1988; Dash & Gill 1984).

Such problems arise, for example, in the context of models of artificial freezing
and thawing of flows in porous media (Maksimov 1965, 1976; Goldstein & Reid
1978; Kornev & Mukhamadullina 1994) assuming that pore size within the medium
is small relative to the size of the frozen body, and are applicable to the study of
crystal solidification and melting in a Hele-Shaw cell. In fact, the behaviour of our
solutions bears a close resemblance to solutions of the one-phase zero-surface-tension
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Figure 1. Schematic diagram of the geometry (in the dimensionless variables).

Hele-Shaw problem, melting being analogous to the stable case where fluid is injected
into the cell, and crystallization to the unstable suction case, and we return to this
analogy later. However, it should be noted that crystallization in a rectangular cell
or capillary, and solidification of a binary system or a pure material, may radically
change the selection principle. Bouissou et al. (1989) consider a binary system in a
rectangular cell, while other theoretical studies (Ananth & Gill 1989, 1991; Benamar
& Pelce 1988; Dash & Gill 1984; Xu 1993) operate with flows of pure melt. As
experimentally shown by Lee, Ananth & Gill (1993), the results for a pure material
solidifying within a cylindrical capillary are opposite to those of Bouissou et al. (1989),
so the theoretical treatment of existing experimental data should be approached with
caution.

Briefly, the layout of this paper is as follows: we first formulate the problem of
quasistatic two-dimensional solidification and melting in potential flows in terms
of analytic functions. Such a formulation allows us to calculate more complicated
evolution than simple travelling waves, and enables us to show a relationship between
solidification problems and the purely hydrodynamical Hele-Shaw flow. Semi-infinite
frozen bodies will be considered, and as examples, the steady growth of a parabolic
dendrite, a flat interface, and the unsteady growth of irregularities which we call
‘cracks’ will be discussed.

2. Mathematical model
We consider a situation in which part of a saturated porous medium is frozen, at

the melting temperature Tm (assumed constant), while in the remainder the unfrozen
liquid flows according to Darcy’s law (see figure 1 for a sketch). The unfrozen liquid
flows from left to right, and the frozen region grows from the right. We assume that
the liquid is incompressible, and that the thermophysical parameters of the matter
are constant. The temperature and the velocity at infinity are denoted by T∞ and
V∞ respectively. The former is taken to be constant, while the latter represents a
far-field flow and may vary spatially. In the case T∞ > Tm the frozen region recedes,
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and solutions describe a melting dendrite in a warm flow, and when T∞ < Tm we
have the opposite situation of a dendrite growing into an oncoming supercooled
liquid.

In the dendrite cross-section we introduce the coordinate system z = x + iy and
the complex flow potential W = ϕ + iψ, where ϕ is the velocity potential and ψ
is the stream function. The variables x, y and function W are dimensionless, so
x̂ = lx, ŷ = ly and Ŵ = V∞lW where the hatted variables are dimensional, and
l is a characteristic dendrite size, which must be determined. The velocity potential
is related to the pressure p by ϕ = −kp/(V∞µl) where k is the permeability of the
medium and µ is the viscosity of the fluid. Gravity is neglected. The mathematical
model in the dimensionless variables then has the form

∇ · V = 0, V = ∇ϕ, PeV · ∇θ = ∇2θ, z ∈ Ω(t);

θ = 0, −∂θ
∂n

= vn,
∂ϕ

∂n
= 0, z ∈ ∂Ω(t);

V → V∞ as |z| → ∞;

lim
x→−∞ θ = θ∞, lim

y→±∞
∂θ

∂y
= 0;

Ω(t)
∣∣
t=0

= Ω0.


(2.1)

Here vn is the normal (outward with respect to the liquid region) velocity of den-
drite growth, in which time has been made dimensionless with the thermal time
l2ρL/(κ|T∞ − Tm|); L is the latent heat, and κ is the thermal conductivity of the liq-
uid. The function θ = (T − Tm)/|T∞ − Tm| describes the temperature field within the
liquid; with this normalization the two possibilities we consider are θ∞ = ±1 (melting,
and crystallization with supercooling, respectively). The Péclet number Pe = V∞l/D is
a measure of the intensity of heat transfer by convection compared with conduction,
and D is the thermal diffusivity of the liquid. The region Ω is occupied by liquid, ∂Ω
is its boundary, and Ω0 is the corresponding initial domain.

In fact we only need consider one of the two problems (melting or crystallization),
since reversing the sign of the temperature (θ 7→ −θ) leaves the model unchanged
apart from the kinematic boundary condition and the condition on θ at infinity,
which are both reversed. Hence, if we can obtain the free boundary evolution of,
say, a melting dendrite using the model (2.1) with θ∞ = 1, reversing time in this
evolution describes a solid dendrite growing in a supercooled liquid. We shall assume
this ‘time-reversibility’ freely in our solutions.

Note that we have assumed a quasi-static model for the heat flow, which is why the
normal velocity in the Stefan condition ‘−∂θ/∂n = vn on ∂Ω’ has been scaled using
the timescale l2ρL/(κ|T∞−Tm|) instead of with V∞. This model is therefore applicable
to the common situation in which the volume heat capacity is negligible compared
with the latent heat (Goldstein & Reid 1978; Glicksman, Coriell & McFadden 1986).
We also assume that the imposed hydrodynamic velocity is much greater than the
velocity caused by the solid–liquid density difference, and the stronger condition that
the velocity of the forced flow is much greater than the velocity of crystallization
(we comment briefly on this assumption in the Conclusions). Then the frozen body
at any instant of time serves as a quasi-static obstacle for the flow; this is why
the boundary condition for the potential does not involve vn. When hydrodynamic
and crystallization velocities are comparable the problem is more complicated and
we cannot directly apply the technique proposed below. However, the experimental
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Figure 2. Diagram of the problem in the Boussinesq plane.

situation described above is widespread (Bouissou et al. 1989; Goldstein & Reid
1978), and the model is reasonable.

3. Uncoupling of the problem
It is remarkable that the moving boundary problem (2.1) may be split into two

independent subtasks (Maksimov 1965, 1976; Goldstein & Reid 1978; Kornev &
Mukhamadullina 1994), the first of which is the problem of heat exchange between a
semi-infinite isothermal knife and a homogeneous flow. The second subtask contains
all the ‘free boundary’ aspects of the problem. The split is effected by applying
the Boussinesq transformation (Boussinesq 1905) to the convective heat transfer
equation, which is equivalent to a conformal mapping from the liquid region in the
physical plane onto a domain in the complex potential (W ) plane, or using ϕ, ψ
as independent variables. The equation for the temperature field θ remains invariant
under this transformation, and is

Pe
∂θ

∂ϕ
=
∂2θ

∂ϕ2
+
∂2θ

∂ψ2
. (3.1)

The body cross-section maps into the cut directed along the positive real axis ψ = 0,
ϕ > 0 in the complex potential W -plane (figure 2). In accordance with the above we
have

lim
ϕ→−∞ θ = 1, lim

ψ→±∞
∂θ

∂ψ
= 0; θ = 0 on ϕ ∈ [0,∞), ψ = ±0. (3.2)

Introducing the further transformation (ψ, ϕ) 7→ (ξ, η), given in complex form by

W = ω2, ω = ξ + iη,

(in the complex variable interpretation we have mapped from the cut W -plane to
the upper-half ω-plane) we look for a similarity solution θ = f(η).† This leads to the
ordinary differential equation and boundary conditions

f′′(η) + 2Pe η f′(η) = 0 (η > 0), f(0) = 0, f(∞) = 1,

† There are several possible ways of deriving the resulting temperature field; see for instance
Benamar et al. (1988), Dash & Gill (1984), Wijngaarden (1966).
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and the explicit solution is then easily obtained as

θ = f(η) = 2

(
Pe

π

)1/2 ∫ η

0

exp(−Pe s2) ds. (3.3)

We remark here that the ‘backward problem’, in which the flow direction is reversed,
is much more difficult. The Péclet number changes sign in the dimensionless model,
corresponding to heat being convected in the opposite direction, and we cannot expect
to be able to impose the same boundary conditions at infinity (it is easily checked that
there is no similarity solution of the kind proposed above). We must specify conditions
upstream, not down, but which conditions? This Pe < 0 problem is essentially the
(local) rear stagnation-point problem for flow past a finite body, whereas the Pe > 0
problem is the (local) forward stagnation-point problem, which is much simpler. To
solve for the rear problem we must solve (i) the forward problem; (ii) the outer
problem (matching onto the solution of (i)); and finally, the rear problem, matching
onto (ii). We do not consider such complications in this paper.

An alternative method of solution is given by Wijngaarden (1966): by using the
Green’s function for the Helmholtz equation, the problem (3.1)–(3.2) can be reduced
to the integral equation

π =

∫ ∞
0

∂θ

∂ψ
exp

(
Pe

2
(ϕ− ξ)

)
K0

(
Pe

2
|ϕ− ξ|

)
dξ,

where K0(z) is the modified Bessel function. This integral equation can be solved in
closed form using the Wiener–Hopf technique.

It is easily seen from the solution (3.3) (and it can be deduced from the integral
equation formulation above) that on the cut ψ = 0,∣∣∣∣ ∂θ∂ψ

∣∣∣∣ =

(
Pe

πϕ

)1/2

. (3.4)

The combination (Pe/π)1/2 arises many times in the following, so henceforth we write
σ = (Pe/π)1/2.

Using the relation (3.4), the heat flux at the unknown boundary is transformed to∣∣∣∣∂θ∂n
∣∣∣∣ =

∣∣∣∣ ∂θ∂ψ
∣∣∣∣∣∣∣∣∂ψ∂n

∣∣∣∣ =

∣∣∣∣ ∂θ∂ψ
∣∣∣∣∣∣∣∣∂W∂z

∣∣∣∣ =
σ

ϕ1/2

∣∣∣∣∂W∂z
∣∣∣∣. (3.5)

This condition enables us to reformulate the initial problem in terms of analytic
functions, just as for the Hele-Shaw problem (Bensimon et al. 1986; Kessler et al.
1988; Howison 1992).

4. The Polubarinova–Galin equation
We again consider the auxiliary plane ω = ξ+ iη (the plane of canonical variables)

so that the upper half of the plane corresponds to the flow region, recalling that
W = ω2. We take the origin at the stagnation point and the corresponding point in
the auxiliary plane is also placed at ω = 0. Let the function f map the upper half of
the ω-plane onto the region Ω(t): z = f(ω, t). The unit vector normal to the moving
interface ∂Ω(t) = x0(t) + iy0(t) can be expressed as

n = nx + iny = i
∂f

∂ω

∣∣∣∣ ∂f∂ω
∣∣∣∣−1

,
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on the boundary ω = ξ. The normal velocity of the interface then has the form

vn = (ẋ0nx + ẏ0ny) = Re {(ẋ0 + iẏ0)(nx − iny)}

= Re

{
∂f

∂t
i
∂f

∂ω

∣∣∣∣ ∂f∂ω
∣∣∣∣−1
}
, ξ ∈ (−∞,∞), η → +0. (4.1)

On the other hand, the boundary of the frozen region is a streamline, so at the
dendrite interface we have

±i

∣∣∣∣ ∂θ∂ψ
∣∣∣∣(Vx − iVy) = ±i

∣∣∣∣ ∂θ∂ψ
∣∣∣∣∂W∂z = −vnn, ψ = ±0. (4.2)

Combining equations (3.4)–(4.2) we get the condition

Re

{
∂f

∂t
i
∂f

∂ω

}
= − σ

W 1/2

∂W

∂ω
, ξ ∈ (−∞,∞), η → +0. (4.3)

In (4.3) we have taken into account the multivalence of the square root, whereby the
heat fluxes at different sides of the cut have different signs. Finally using

W = ω2, (4.4)

we obtain the Polubarinova–Galin (P-G) equation (Howison 1992)

Re

{
∂f

∂t
i
∂f

∂ω

}
= −2σ, ξ ∈ (−∞,∞), η = 0. (4.5)

(This same equation arises in the zero-surface-tension Hele-Shaw problem with an im-
posed pressure gradient; see for instance Howison 1992.) In the dimensional variables
the factor of 2σ on the right-hand side of (4.5) becomes 2LρV∞l/(κ|T∞ −Tm|(πD)1/2).

In addition to the boundary condition (4.5), we must specify the asymptotic be-
haviour of the function f at infinity, and the initial dendrite shape. For the former,
we can use the boundary condition for the velocity at infinity. We specify the initial
dendrite shape as

f(ω, 0) = f0(ω), (4.6)

where f0 is the mapping of the upper half-plane onto the initial region Ω0. Thus, the
boundary value problem (2.1) is reduced to the nonlinear boundary value problem
(4.5)–(4.6) for analytic functions f, together with a boundary condition at infinity.

We observe (for later use in § 8) that there is another simple situation which leads to
the same P-G equation. Consider an asymptotically-flat semi-infinite solid region, and
a flow which is roughly parallel to it, so that in the dimensional variables ψ̂ → V∞ŷ
as ŷ → ∞ (in contrast to the oncoming, stagnation-point flow assumed so far).
Suppose further that a constant temperature gradient is imposed across the flow, so
∂T/∂ŷ → ∆ as ŷ → ∞ (∆ > 0 gives rise to melting, ∆ < 0 to freezing; but again the
‘time-reversibility’ means that we need only consider ∆ > 0).

In the Boussinesq plane the flow domain will be exactly the upper half-plane ψ > 0.
Replacing |T∞ − Tm| by |∆|l in the scalings of § 2, the solution for the dimensionless
temperature is exactly θ = ψ. This satisfies the boundary condition on ψ = 0 and,
since (in the dimensionless variables) ψ → y as y → ∞, does indeed give rise to
a constant temperature gradient at infinity in the physical plane. The analogue of
equation (3.4) is then |∂θ/∂ψ| = 1, and (3.5) becomes |∂θ/∂n| = |∂W/∂z|. In this
geometry the variables ω and W coincide, and following through the argument which
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led to (4.5) we find

Re

{
∂f

∂t
i
∂f

∂ω

}
= −1, (4.7)

which is exactly the same P-G equation (if σ = 1/2). In the dimensional form of the

right-hand side, the factor of 1 is replaced by ρLV
1/2∞ /(κ|∆|l1/2).

5. Reformulation as an integral equation
Assuming that z = f(ω, t) is an acceptable parametrization of the moving boundary

at least for small t, i.e. that f is a univalent function on the upper half-plane, one can
rewrite the condition (4.5) in the form

Re

{
−i
∂f

∂t

/
∂f

∂ω

}
= −2σ

∣∣∣∣ ∂f∂ω
∣∣∣∣−2

, ξ ∈ (−∞,∞), η = 0.

The application of the Schwarz (Poisson) formula to this condition enables one to
determine the analytic function (∂f/∂t)/(∂f/∂ω) in the upper half-plane η > 0 via
its real part on the real axis (the boundary of the upper half-plane). One can express
condition (4.5) in the form of a nonlinear, non-local partial differential equation for
the Riemann mapping function f(ω, t):

∂f

∂t
= − ∂f

∂ω

2σ

π

∫ ∞
−∞

∣∣∣∣∂f∂ζ (ζ, t)

∣∣∣∣−2
dζ

ζ − ω , Im(ω) > 0. (5.1)

We call (5.1) a Löwner–Kufarev type equation because of the analogy with the well-
known linear partial differential equation which appears in univalent function theory
(Aleksandrov 1976; Pommerenke 1973). The kinematic condition on the moving
boundary ∂Ω(t) is represented in the form (4.5) for the boundary values of the
Riemann mapping function z = f(ω, t) if and only if the Löwner–Kufarev type
equation (5.1) holds for the analytic mapping function z = f(ω, t) in the upper half-
plane. In fact, as well as the above-mentioned conclusion (that equation (5.1) follows
from (4.5)), it can be shown conversely that, taking the limit as ω tends to ξ on
the real axis, and using the Sokhotsky–Plemelj formulae (Muskhelishvili 1968), the
equation (5.1) becomes equivalent to the kinematic condition in the form (4.5). We
return to this formulation of the problem in § 8.

6. The Schwarz function
The integro-differential equation (5.1) for the function of time and spatial variable

is complicated and can be used only for numerical calculations of the dendritic shape.
A useful alternative approach enabling many exact solutions to be constructed is
provided by considering the Schwarz function of the free boundary.

We first recall some properties of the Schwarz function (Howison 1992; Davis
1974). It is obtained by substituting for x = (z+ z)/2, y = (z− z)/2i into the equation
F(x, y, t) = 0, describing the boundary of the dendrite. Solving this equation for z in
the form

z = g(z, t), (6.1)

we obtain the Schwarz function of ∂Ω(t) (Howison 1992; Davis 1974). It only exists for
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analytic curves in (x, y)-space, and is itself an analytic function in some neighbourhood
of the curve. The following relations will be useful:

dz

ds
=

(
∂g

∂z

)−1/2

, (6.2)

vn =
i

2

∂g

∂t

(
∂g

∂z

)−1/2

; (6.3)

hereafter s is arclength and all the formulæ hold for z ∈ ∂Ω. We can now relate g to
the complex potential W (z, t). Because the boundary of the dendrite is a streamline,
we have

dW

dz
=

dW

ds

(
dz

ds

)−1

=

(
∂g

∂z

)1/2
∂ψ

∂n
. (6.4)

Expressing ∂ψ/∂n in (6.4) via the heat flux and the normal velocity of the moving
boundary (equations (3.5) and (3.4)), and then using (6.3), we arrive at the equation

1

W 1/2

dW

dz
= − i

2σ

∂g

∂t
. (6.5)

Both sides are analytic on ∂Ω and hence (6.5) holds wherever both functions exist.
Equation (6.5) differs from the ordinary Hele-Shaw equations for the Schwarz function
given by Richardson (1972), Lacey (1982) and Millar (1989), though the analogy is
very close.

We can write g(z, t) in terms of the mapping function f(ω, t), which allows us to
use the above result to construct explicit solutions. By definition, the function f(ω, t)
maps η > 0 onto Ω(t) and η = 0 onto ∂Ω(t). Then, on the moving boundary, we have
z = f(ω, t) = f(ω, t) = f(ω, t), i.e. the equation

g(z, t) = f(ω, t), (6.6)

holds on ∂Ω. But since f is analytic on the (closed) upper half-plane, f is analytic
on the closed lower half-plane, so both sides of this equality are analytic in some
neighbourhood of the boundary (considering z as a function of ω, or vice versa).
Hence (6.6) may be analytically continued away from the boundary, and holds
wherever both sides are defined. It follows that g has singularities in the upper half-
plane at the complex conjugates of those of f in the lower half-plane. Hence, since
W is analytic in η > 0 (except possibly at infinity), (6.5) implies that any singularities
of the Schwarz function are completely determined by g(z, 0) and must necessarily
be constant both in magnitude and in position. The Schwarz function method is
well-suited to functions which have poles or logarithmic branch points in the lower
half-plane. It offers a basis for the construction of novel classes of explicit non-trivial
solutions. We shall demonstrate the efficacy of the statement in terms of analytic
functions by giving some simple examples.

7. Ivantsov’s dendrite
We first reproduce the Ivantsov solution, i.e. we show that a dendrite of parabolic

shape grows at constant velocity. Thus we consider a dendrite whose transverse size
increases at infinity not faster than x1/2. This solution was obtained by different means
by Benamar et al. (1988), Dash & Gill (1984).
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To obtain such a solution we use the condition for the (dimensionless) flow velocity
at infinity given in (2.1), namely

∂W

∂f
=
∂W

∂ω

∂ω

∂f
= 1, ω →∞. (7.1)

Equation (7.1) implicitly assumes that the symmetry axis of the dendrite is aligned in
the x-direction. Using (4.4) in (7.1), we see that

f ∼ ω2, ω →∞. (7.2)

Considering the problem (4.5), (4.6), (7.2) for f(ω, t), we seek the steady shape of a
dendrite growing in supercooled liquid. We postulate the following parabolic ansatz
for the solution of this problem:

f(ω, t) = ω2 + iA(t)ω + B(t), (7.3)

with

f0(ω) = ω2 + B(0).

Then the condition (7.2) is satisfied automatically and equation (4.5) leads to the
formulæ

Ȧ = 0; B =
2σt

A
. (7.4)

Without loss of generality we can take A = 1 (this means that all spatial variables are
normalized by the tip radius l). As an alternative to using the P-G equation, we can
obtain the same solution using the Schwarz function result (6.5) above. The Schwarz
function g(z, t) is given by

g(z, t) = f(ω, t) = ω2 − iA(t)ω + B(t),

where ω is given as a function of z by inverting (7.3). The left-hand side of equation
(6.5) is singular only at infinity, where W (z) ∼ z (a simple pole), hence we must
find the behaviour of ∂g/∂t at infinity and match in (6.5). Inversion of the map (7.3)
reveals that

g(z, t) = z − 2iAz1/2 − A2 +
iA

z1/2

(
B +

A2

4

)
+ O(z−3/2).

Equating the behaviours at infinity in (6.5), we retrieve equations (7.4) again.
In dimensional form we find the velocity of propagation of the parabolic dendrite

as

v =
2κ|T∞ − Tm|

L

(
V∞
πlD

)1/2

. (7.5)

Thus, as with Ivantsov’s original solution, we have indeterminacy, in that we obtain
only a relation between the tip radius and the velocity, and no unique ‘selection
principle’ telling us what both l and v are. As expected (since we consider a different
régime) our formula (7.5) differs from Ivantsov’s, and we cannot take the limit
V∞ → 0 because the approximation we made in our model is not then valid.† Recall
that we assumed the hydrodynamic velocity to be much greater than the crystallization

† We do not present Ivantsov’s formula here, since is given in a complicated implicit form which
makes a direct comparison difficult.



10 L. M. Cummings, Y. E. Hohlov, S. D. Howison and K. Kornev

velocity v, which is what enabled us to separate the Boussinesq problem from the free-
boundary problem itself. In the opposite limit in which the crystallization velocity
dominates, the explicit solution is more complicated and has been presented by
Benamar et al. (1988), Dash & Gill (1984). In the latter paper the authors find a
dimensionless heat flux (Nusselt number) for the potential flow around the parabolic
dendrite, which at the stagnation point has the value Nu = (2Pe/π)1/2 (equation (93)
of Dash & Gill 1984). In our notation, this equates to a dimensional heat flux at the
stagnation point of magnitude∣∣∣∣∂T∂n

∣∣∣∣ =
|T∞ − Tm|

l

(
2Pe

π

)1/2

. (7.6)

While the Stefan boundary condition that we use is not the appropriate one for their
analysis, it is worth remarking that if we naively substitute (7.6) into this condition,
we find an ‘effective’ growth velocity

ve =
κ|T∞ − Tm|

L

(
2V∞
πlD

)1/2

,

so the result is the same as ours modulo an unimportant constant.†

8. Linear stability of flat interfaces
As a basis for a morphological stability analysis (Mullins & Sekerka 1963, 1964)

we examine the growth of a flat interface at constant velocity. The first case we
consider is with an extensional-type fluid flow, i.e. a stagnation point flow against a
flat interface. Although this seems unlikely at first sight, it is obvious when we note
that there is a stagnation point at the tip of a steadily-propagating parabolic dendrite,
which is of course locally flat. Indeed, the flat interface solution could be derived by
a local expansion of the Ivantsov solution; however, it is simpler to derive it directly.

At infinity the complex potential W has behaviour W ∼ −αz2/2, with prescribed
velocity gradient α, so the velocity field is (u, v) ∼ (−αx, αy). In this case, the boundary
condition at infinity is written in dimensional form as

∂W

∂f
=
∂W

∂ω

∂ω

∂f
∼ −αf as ω →∞. (8.1)

The scalings used are those of § 2, where the characteristic velocity V∞ is chosen as
V∞ = αl (the characteristic lengthscale l is introduced for convenience, and does not
appear in the resulting formula for the moving interface).

We consider the linear mapping

f = i
√

2ω + B(t), (8.2)

from the upper half-plane to the fluid region (all the parameters are dimensionless).
This gives a solution of equation (4.5) provided the parameter B(t) satisfies

B(t) =
√

2σt. (8.3)

(This solution is also trivial to obtain using the ‘Schwarz function’ method.)
We now consider the stability of this interface to small periodic perturbations. It

is convenient to do this using the Löwner–Kufarev formulation of equation (5.1).

† The authors are indebted to an anonymous referee for suggesting this comparison.
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We assume the same flow conditions at infinity, and expand the mapping function in
powers of the small parameter ε (which measures the deviation of the interface from
the flat) as

f(ω, t) = f(0)(ω, t) + εf(1)(ω, t) + O(ε2),

where f(0) is the solution to the unperturbed problem found above. Substituting into
(5.1) gives the O(ε) problem

f
(1)
t =

2iσ

π

∫ ∞
−∞

Im(f(1)
ζ )

ζ − ω dζ − iσf(1)
ω , Im(ω) > 0 (8.4)

(the subscripts denote partial derivatives). The interface is described by the mapping
function f(ξ, t) for ξ ∈ (−∞,∞), thus on the boundary,

z = x+ iy = i
√

2ξ + σ
√

2t+ εf(1)(ξ, t). (8.5)

We seek the Fourier modes for the boundary values f(1)(ξ, t) of the form

f(1)(ξ, t) = F(k, t)eikξ;

the wavenumber k must be positive to ensure analyticity of f(1) in the upper half-plane.
When substituting in (8.4) we need the relation

2i

∫ ∞
−∞

Im(f(1)
ζ )

ζ − ω dζ =

∫ ∞
−∞

f
(1)
ζ (ζ, t)− f(1)

ζ(ζ, t)

ζ − ω dζ

= ikF(k, t)

∫ ∞
−∞

eikζ

ζ − ωdζ + ikF(k, t)

∫ ∞
−∞

e−ikζ

ζ − ωdζ

= −2πkF(k, t)eikω.

The last equality is obtained by two separate contour integrals, the first around a
large semicircle in the upper half-plane, since this is where eikζ decays, and the second
around a semicircle in the lower half-plane, where e−ikζ decays. Using this in equation
(8.4) then, in the limit Im(ω)→ 0 we obtain

Ft(k, t) = −σkF(k, t).

On the boundary (8.5) gives

z = x+ iy = i
√

2ξ + σ
√

2t+ εF(k, t)eikξ.

Thus in the case of melting we have a stable solution, with perturbations decaying
exponentially like exp(−λt), where λ = σk. (Recalling the scaling used for time, the

dimensional dispersion is λ̂ = (α/πD)1/2(κq|T∞ − Tm|)/(ρL), where the dimensional
wavenumber q is defined by q = k/l.) The freezing behaviour is given by the time-
reversal of this analysis, hence here we have an unstable solution. This analysis should
be relevant for the stability of the tip of a steadily-growing dendrite, which as already
noted is locally flat.

The other situation we consider is the stability of a flat interface in a parallel
flow, across which a uniform temperature gradient ∆ is imposed (this situation was
considered at the end of § 4). This will be the local situation on the sides of a steadily
growing dendrite, hence this analysis should indicate the stability in this régime. As
observed in § 4, although this is a different physical problem it leads to the same P-G
equation, and hence the same Löwner–Kufarev formulation (5.1). It follows from this
that the basic travelling-wave solution about which we perturb must be given by (8.2)
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and (8.3) (with σ = 1/2), and therefore that the stability analysis carried out above
follows through in this case also. Hence we have the same result that melting is stable,
and crystallization is unstable, with the dimensionless dispersion relation λ = k/2.
The dimensional relation, showing the dependence on the temperature gradient ∆, is

λ̂ = qκ|∆|/(2ρL), where again q = k/l. The timescales in these two situations differ,
due to the different instability mechanisms (though they will be related if we are
considering the coupled problems of flow at the nose, and flow around the sides of
the dendrite). For the stagnation point flow the forced convection plays an important
role, but for the parallel flow the instability is caused solely by the conductivity
transport (as in the ordinary Mullins–Sekerka instability (Mullins & Sekerka 1963,
1964)).

Note that the dispersion relations for each case are unbounded, since they increase
linearly with the wavenumber q. This is due to the neglect of regularizing surface
effects in the analysis; if we included the relevant effects the dispersion relations
would be modified, and presumably bounded. However, as we observe later in § 10,
the precise form of the regularization we should use for the porous medium problem
is unclear.

We comment here that Brattkus & Davis (1988) have also considered the effect
of forced flow on the stability of a solidifying interface. However, they used the
boundary-layer approximation, so their analysis does not apply in the neighbourhood
of the stagnation point. In another related work, Davis (1990), the effective decoupling
of hydrodynamic disturbances and thermal disturbances is discussed in detail. It is
surprising, but to our knowledge nobody has previously studied the stability of the
interface for forced potential flow at the stagnation point.

9. Unsteady solutions
We turn now to exact unsteady solutions. As mentioned in § 6, a novel class of

explicit solutions can be constructed by introducing perturbations, for example poles
or logarithmic branch points, into basic polynomial solutions (such as Ivantsov’s
dendrite), provided that all the singular points of the perturbation lie in the lower
half-plane (since the mapping function f must be analytic on the upper half-plane).
We consider the solutions

f = ω2 + iω + B(t) +

N∑
k=0

dk ln(ω + αk(t)), Im(αk) > 0, (9.1)

where the dk and αk(t) are complex parameters (dk are specified constants), and B(t)
is real. (Similar solutions are given by Kunka, Foster & Tanveer 1997; they were
constructed independently of, and concurrently with, the present work.) The dk and
αk are subject to various constraints to ensure (9.1) is univalent on the upper half-ω-
plane, the most obvious of which is that Im(αk) > 0 for all k, but we only consider
the details of these constraints in the simple case N = 1. By far the simplest way of
obtaining the evolution equations is to use the method outlined in §6, based on the
fact that the singularities of the Schwarz function in the liquid domain must remain
constant in position and time. Using (6.6),

g(z, t) = f(ω, t) = ω2 − iω + B(t) +

N∑
k=0

dk ln(ω + αk(t)),
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which has branch points at ω = −αk in the upper half-ω-plane, giving the N invariants
of the flow:

f(−αk) = const. = Ck, 1 6 k 6 N,

whence

α2
k(t)− iαk(t) + B(t) +

N∑
r=0

dr log(αr(t)− αk(t)) = Ck. (9.2)

These are 2N real equations for the unknown coefficients B, αk , so we need one
more equation which comes from matching at infinity in (6.5). Since we are looking
at a perturbation to the Ivantsov parabola, we want W (z) ∼ z at infinity. For the
behaviour of ∂g/∂t at infinity we use

∂g

∂t
=
∂f

∂t
+
∂f

∂ω

∂ω

∂t
,

where we find ∂ω/∂t from

0 =
∂f

∂t
+
∂f

∂ω

∂ω

∂t
.

A little algebra gives the leading-order behaviour for large |z| as

∂g

∂t
∼ 1

z1/2

{
N∑
k=1

(dkα̇k − dkα̇k) + iḂ

}
;

matching in (6.5) then leads to

Ḃ = 2σ + 2Im

(
N∑
k=1

dkα̇k

)
, (9.3)

which is trivial to integrate. We remark that the ‘flat interface’ solution of § 8 is
also easily generalized in this manner, by adding on logarithmic terms to the basic
mapping function.

As a simple example, consider the case N = 1, with α1 = ib, for which

f = ω2 + iω + B(t) + d ln(ω + ib(t)), b > 0. (9.4)

This is conformal on the upper half-ω-plane provided b > 0 and b > d. We may
think of a ‘univalency domain’ in (d, b)-space, with only the region b > 0, b > d giving
univalent maps (9.4). The line b = d > 0 corresponds to cusped free boundary shapes,
having a single 3/2-power cusp at the point z = f(0, t) on ∂Ω(t), so f′(0, t) = 0. In
d < 0, as the line b = 0+ is approached, free boundary shapes are generated which
are basically parabolæ (with nose pointing into the liquid region), but with a parallel-
sided channel of width π|d| removed from the centre, along the axis of symmetry.
Such a structure (especially when |d| � 1) may be thought of as a liquid-filled ‘crack’
in the solid dendrite.

In the (x, y)-plane, (9.4) gives the free boundary in parametric form as

x = ξ2 + B(t) +
d

2
ln(ξ2 + b2(t)),

y = ξ + d arctan
b(t)

ξ
,
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Figure 3. A typical solution of the form (9.4) in the cases of: (a) melting, the parameter values are
d = −0.1, b(0) = 0.1, B(0) = 0; (b) crystallization, leading to a ‘crack’ type structure (a tip-splitting
event), the parameter values are d = −0.05, b(0) = 0.1, B(0) = 0; (c) crystallization, leading to a
cusped free boundary, the parameter values used are: d = 0.5, b(0) = 1, B(0) = 0.

for ξ ∈ (−∞,∞). Evolution of the dendrite shape is determined by the branch-point
dynamics as dictated by equations (9.2) and (9.3). In this simple case, solution using
the P-G equation is also easy, leading to the (equivalent) system

B(t) = 2d(b(t)− b(0)) + 2σt, (9.5)

ḃ =
bσ

(b+ 1/2)(b− d) . (9.6)

Remember that increasing time corresponds to melting, while decreasing time de-
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scribes crystallization. For an initially univalent map we must have b(0) > 0, b(0) > d.
In the melting case (9.6) then implies ḃ > 0 always, whether d is positive or negative.
Hence in this case the evolution is always regular, with any initial non-uniformities in
the boundary being smoothed out (figure 3a), and approaches the Ivantsov solution of
§ 7 as t→∞ (this behaviour may be compared to perturbing any zero-surface-tension
(ZST) Hele-Shaw travelling-wave solution, in the stable injection case).

For the case of crystallization (decreasing time) we must consider the cases d >
0, d < 0 separately. When d < 0 (9.6) gives the asymptotic behaviour of b as

b(t) ∼ exp

(
−2σt

d

)
, t→ −∞, (9.7)

which consequently determines the flow pattern (the analogous asymptotic behaviour
of the general solution (9.1) is also easy to obtain). The shape of the dendrite is
regular at any instant of time, but as t → −∞ the ‘crack-type’ structure referred to
above inevitably develops (figure 3b). This may be thought of as a ‘tip-splitting’ event
at the dendrite tip. Such evolution may be compared with the very similar ‘fingering’
geometries which arise in the ZST Hele-Shaw solutions of Howison (1986), Mineev–
Weinstein & Ponce–Dawson (1994) in the unstable suction case (the ‘air’ in the
Hele-Shaw cell corresponds to the solid dendrite in our problem).

For d > 0, b(0) > d, analysis of (9.6) shows that b decreases towards d as t decreases,
reaching d within finite time, giving cusp formation in the free boundary, at which
point the solution breaks down (figure 3c). (In reality the appropriate regularizing
surface effects would become important as such a configuration is neared; see the
Conclusions below.) Note that in the reversed melting problem, such singular initial
geometry would be instantly smoothed. Again, the analogy with the unstable ZST
Hele-Shaw suction problem is very close, as inward-pointing cusps (relative to the
liquid) are frequently obtained in such solutions.

With the more general mapping function (9.1), structures can be generated which
undergo several tip-splitting events. Provided all the dk have negative real parts,
solutions to the crystallization problem can be found which exist for all time, and
since the asymptotic behaviour of the time-dependent parameters is easy to determine,
we can more or less choose the sequence of tip-splitting events we wish to observe,
by suitably choosing the initial parameters. (Complex values of the dk will produce
non-parallel ‘cracks’ in the dendrite.) If some of the dk have positive real parts, finite-
time cusp formation is inevitable, but judicious choice of the initial parameter values
can give solutions which first have tip-splitting events, and then break down via cusp
formation (Cummings 1996).

10. Conclusions
We have demonstrated that the problem of quasi-static dendrite growth in a forced

potential flow can be reformulated in terms of analytic functions. This formulation
gives a method for constructing many explicit solutions, which can describe complex
fingering patterns. In our example, the appearance of ‘cracks’ (which may be inter-
preted as tip-splitting events) and cusps is caused by the presence of a logarithmic
branch point in the mapping function f(ω, t). Clearly, this introduction of logarithmic
branch points is not a unique way of obtaining such patterns: many other combi-
nations of poles and logarithms could be added into the basic quadratic (or linear)
mapping function. In terms of the initial geometry, tip-splitting events are associ-
ated with small indentations in ∂Ω(0) relative to the solid, while cusp formation is
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associated with small protruberances in ∂Ω(0). From the parallels drawn throughout
this paper, it should now be clear that ZST Hele-Shaw flow and our problem of
crystallization in a forced flow are closely related.

Throughout the paper we have ignored what we loosely refer to as ‘regularizing
surface effects’ at the moving boundary, assuming them to be small. Our vagueness
here is deliberate, since our model may be used to describe both ordinary two-
dimensional potential flow around a frozen body (e.g. an icicle in a stream of water,
or melting/freezing in a Hele-Shaw cell) and melting/freezing within a saturated
porous medium. For the case of ordinary potential flow the Gibbs–Thomson condition
(equating the temperature jump across the interface to the curvature of the boundary
times a constant incorporating the surface tension, ordinary melting temperature
and latent heat (Pamplin 1980)) is the accepted interfacial condition; however the
analogous condition for the porous medium problem (with pore size within the
medium assumed small relative to the size of the frozen body) remains open to
debate (Dash, Haiying Fu & Wettlaufer 1995) – consider for instance the small-scale
phase-change problem in the pores of the medium. Obviously, inclusion of such effects
does change the dendrite shape, but we believe that the effect will be negligible except
at points of high curvature of the boundary, such as may occur at crack tips, or, in
the case of the cusp solutions, as the cusped state is approached. In this context we
recall the assumption made earlier, that the velocity of the forced hydrodynamic flow
is much greater than the velocity of crystallization. Obviously this cannot be the case
as cusped configurations are approached; we also expect surface effects to become
important in this situation, and for both reasons we cannot expect the model to apply
in the final stages of cusp formation. Likewise, for flow in a saturated porous medium,
the assumption that the characteristic size of the frozen body is much greater than
the pore size is clearly violated as highly-curved geometries develop. The evolution
beyond cusp formation is an even more contentious issue; it is discussed in the context
of Hele-Shaw flow by Hohlov et al. (1994).

Returning to the analogy with the ZST Hele-Shaw problem, we note recent work
by Siegel and co-workers which suggests that inclusion of even very small non-zero
surface tension γ � 1 can have an unexpected effect on smoothly-evolving solutions of
the ill-posed ‘suction’ problem (Siegel & Tanveer 1996; Seigel, Tanveer & Dai 1996)
(in the sense that the solution with γ ≡ 0 is not necessarily obtained as the γ → 0+
limit). This issue is not yet conclusively resolved however, and the relevance to our
problem (particularly the porous medium case) is uncertain, since there are many
other neglected small effects which may have a much greater bearing on the observed
behaviour than surface tension ever does.

Nonetheless, even if we do believe our solutions capable of describing observable
behaviour in both melting and solidification problems, the fact remains that we have
considerable freedom to choose the parameters in the conformal maps, which naturally
gives rise to questions of selection. In a similar context, we referred earlier to the
non-uniqueness of the travelling-wave parabolic dendrite (both ours and Ivantsov’s);
only one relation exists between the tip radius and the velocity of propagation. One
possible mechanism of dendritic shape selection is the influence of crystal anisotropy
(Langer 1986; Kessler et al. 1988; Brener & Melnikov 1991). It has been conjectured
on the basis of strong evidence from ‘exponential asymptotics’ that anisotropic surface
tension breaks the Ivantsov family into a discrete set of possible shapes (Brener &
Melnikov 1991) (although it is not clear whether anisotropy is the sole mechanism
that can lead to a selection principle). Presumably similar ideas are needed to uniquely
select the dendrite in our model, and also the appropriate tip-splitting behaviour.
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Finally, it should be noted that the free boundary problem for the case of finite
frozen domains may be formulated similarly; however in this case there are no
explicit solutions to the Boussinesq problem, which involves finding the temperature
field around a finite slit. The increased difficulty of the ‘finite body’ problem was
mentioned in § 3. In a subsequent paper we plan to consider some numerical solutions
to such problems.
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